An overview of the Chandra mission and goals, Chandra's namesake, top 10 facts.
Classroom activities, printable materials, interactive games & more.
Overview of X-ray Astronomy and X-ray sources: black holes to galaxy clusters.
All Chandra images released to the public listed by date & by category
Current Chandra press releases, status reports, interviews & biographies.
A collection of multimedia, illustrations & animations, a glossary, FAQ & more.
A collection of illustrations, animations and video.
Chandra discoveries in an audio/video format.
Return to Main Site

The Director's Cut: On Orbit with Chandra


February 1, 2005 ::
Illustration of Chandra Spacecraft
Illustration of Chandra Spacecraft
The director of the Chandra X-ray Center, Harvey Tananbaum, recently sat down with the Chandra Chronicles, where the discussion ranged from "nuts and bolts" topics about the mission to big mysteries of X-ray astronomy. In this installment, questions about the orbit and spacecraft are explored.

Chandra Chronicles (CC): Does Chandra need constant power to orbit Earth?

Harvey Tananbaum (HT): Chandra does need power to operate in orbit - to power its instruments, to control its pointing direction, to stay warm, to communicate with Earth, etc. The amount of power it needs depends on what it is doing, but is usually a little less than 1000 Watts - about
CXC Director: Dr. Harvey Tananbaum
CXC Director: Dr. Harvey Tananbaum
the same as a hair dryer so not very much at all to run an entire satellite.

The amount of power can vary, but that is not really a problem since the solar arrays on Chandra convert light from the Sun to electrical power and provide just over 2000 Watts or about twice as much as Chandra really needs. (Chandra does not use power to orbit the Earth - that energy is provided by the force of the Earth's gravity and the energy expended by the rockets which placed Chandra in orbit).

CC: Are there ever problems of not having enough power when Chandra crosses behind Earth's shadow?

HT: Chandra does, in fact, pass through the Earth's shadow (effectively blocking the Sun) for an hour or two several times over a period of a few weeks every six months. We have three batteries on board Chandra and these are fully charged when we are in daylight, so that they can provide all of the needed power when Chandra is in the Earth's shadow.

Interactive Spacecraft
Chandra Spacecraft
Chandra Spacecraft
(requires flash)
CC: How often do the data collected by Chandra get transferred back to Earth?

HT: Chandra's on-board memory can store 16 hours worth of information and we have two of these so technically we could go up to 32 hours until we download the data. We get the data when we send the command from the ground up to Chandra telling it to transmit the stored-up data. We do this more or less every 8 hours to make sure that Chandra is still healthy and safe and to stay far away from the point of filling up the on-board memory. Once we download the data, we can re-use that memory space.

Chandra and the Deep Space Network
Chandra and the Deep Space Network
To communicate with Chandra, we use the Deep Space Network (DSN) with its large radio dishes. There are three DSN stations spread around the world - one in California, one in Spain, and one in Australia. At any given time, at least one of these locations can line up Chandra so we can communicate with the spacecraft. We just have to share the DSN stations with other missions like the Mars Rovers and Cassini.

CC: I've heard the term "safe mode" or "safing" when it comes to spacecraft in some sort of trouble. Can you explain more what that means?

HT: There are 2 kinds of safings for Chandra.

a. When radiation levels from the Sun get very high (during solar storms or flares), the energetic particles could damage Chandra's CCD (Charge Coupled Device) detectors if they stay at the focus of Chandra's mirrors. So when we see a solar storm using special detectors on Chandra or on other NASA satellites, we can tell Chandra to move the CCDs away from the telescope focus to a "safe" hiding place, which is shielded. This can be done automatically with software on-board Chandra or by sending commands from our Control Center on the ground here in Cambridge, Massachusetts.

b. If a major part of the Chandra spacecraft fails or malfunctions - gyroscopes, reaction wheels, computer, etc. then Chandra is programmed to automatically go into a safe hold. Chandra makes sure that it gets enough energy from the Sun hitting its solar arrays, switches to back-up systems, and waits for further action from the ground to diagnose what has gone wrong and what should be done to restore Chandra to normal operations. We have encountered this type of safing 3 or 4 times in the 5 years in orbit, but luckily all were simple errors here at the Control Center rather than real hardware failures on-board Chandra.

Aspect Camera
Aspect Camera Images
CC: What does the Aspect Camera aboard Chandra do?

HT: The Aspect Camera on Chandra takes digital pictures of the sky in "ordinary" or visible light. The stars in the picture are matched to stars in catalogs taken with larger telescopes on the ground (and in space) and stored as catalogs of stars. Matching the pattern of stars tells us where Chandra is looking on the sky, and helps us to navigate from one part of the sky to another.

CC: What do "pointing stability" and "pointing accuracy" mean, and how do they apply to Chandra?

HT: Pointing stability is a measure of how well Chandra stays locked onto a direction on the sky. This requirement is not nearly as rigorous for Chandra as for the Hubble Space Telescope. We need to keep the target source located near the center of the telescope to be sure that its X-rays will be focused onto the detector at the other end and we will see the target. Pointing accuracy is a measure of how precisely we know where we have been pointing. For Chandra this is much more important and much more demanding than the pointing stability -- at least 10 times tougher.

CC: Chandra has already surpassed its original planned mission of five years, but how long do you expect it will last?

Celebrating Five Years with Chandra
Celebrating Five Years with Chandra
HT: It is now nearly 5 1/2 years since Chandra was launched so we did in fact meet the five-year minimum lifetime. We are hopeful that Chandra will live at least 15 years. It has plenty of fuel and power to last quite a bit longer than that, and it should stay in orbit for 50 or even 100 years. But things can go wrong. For example, eventually some electrical parts are likely to fail. Over time the insulating blanket on the outside of Chandra is becoming less effective at regulating heat flowing in and out of Chandra so parts are getting hotter or colder than we would like. Plus particles from the Sun are also causing a bit of damage to our star trackers and to our CCD detectors. All of this causes Chandra to age and at some point, perhaps 10 or more years from now, some failure or other may make it impossible to operate Chandra - to point it, to power it, to accumulate science data, etc. It is also possible that an accumulation of these aging effects will dilute Chandra's scientific capabilities to the point where it might not be worth operating any longer. But, I hope that is not for a long, long time to come.

More facts about Chandra

Subscribe to the Chandra Chronicles
Receive updates by email GO
Info & Privacy Policy.
Chronicles Archives
Articles from:
['13 | '12 | '11 | '10 | '09 | '08 | '07 | '06 |
'05 | '04 | '03 | '02 | '01 | '00 | '99]
Recent Articles
Chandra Twitter Updates
    Follow Chandra on Twitter

    Return to Main Site

    Subscribe




    Thanks!

    Thanks for your request. You will be hearing from us soon!

    The Chandra X-ray Center emails the Chandra Digest approximately every two weeks and includes the latest press release or image from Chandra, as well as any new science features, additions to the Chandra site and more. We do not use your email for any other purpose. Please see our privacy policy for details.

    Close this window