Images by Date
Images by Category
Solar System
Stars
White Dwarfs
Supernovas
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Quasars
Galaxy Clusters
Cosmology/Deep Field
Miscellaneous
Images by Interest
Chandra for Kids
Multiwavelength
Sky Map
Constellations
3D Wall
Photo Blog
Top Rated Images
Image Handouts
Desktops
High Res Prints
Fits Files
Image Tutorials
Photo Album Tutorial
False Color
Cosmic Distance
Look-Back Time
Scale & Distance
Angular Measurement
Images & Processing
AVM/Metadata
Getting Hard Copies
Image Use Policy
Web Shortcuts
Chandra Blog
RSS Feed
Chandra Mobile
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
More Information
Supernovas & Supernova Remnants
Related Podcasts
A Tour of The Big, Bad & Beautiful Universe with Chandra
Download Image

More Information
Handout
Handout: html | pdf

More Images
"Hard Band" X-ray Image of G292.0+1.8
(Credit: NASA/Rutgers/J.Hughes et al.)

More Releases
G292.0+1.8
G292.0+1.8
(22 Jul 14)
G292.0+1.8
G292.0+1.8
(17 Dec 09)
G292.0+1.8
G292.0+1.8
(23 Oct 07)

Related Images
Cassiopeia A
Cassiopeia A
(19 Aug 02)
DEM L71
DEM L71
(12 Mar 03)
Crab Nebula
Crab Nebula
(19 Sept 02)
Vela Pulsar
Vela Pulsar
(06 Jun 00)
G292.0+1.8:
Chandra Looks at the Aftermath of a Massive Star Explosion


G292.0+1.8
Credit: NASA/CXC/Rutgers/J.Hughes et al.

NASA's Chandra X-ray Observatory has captured a spectacular image of G292.0+1.8, a young, oxygen-rich supernova remnant with a pulsar at its center surrounded by outflowing material. Astronomers know that pulsars are formed in supernova explosions, but they are currently unable to identify what types of massive stars must die in order for a pulsar to be born. Now that Chandra has revealed strong evidence for a pulsar in G292.0+1.8, astronomers can use the pattern of elements seen in the remnant to make a much closer connection between pulsars and the massive stars from which they form.

This Chandra image shows a rapidly expanding shell of gas that is 36 light years across and contains large amounts of elements such as oxygen, neon, magnesium, silicon and sulfur. Embedded in this cloud of multimillion degree gas is a key piece of evidence linking neutron stars and supernovas produced by the collapse of massive stars.

Standing out at higher X-ray energies, astronomers found a point-like source surrounded by features strikingly similar to those found around the Crab Nebula and Vela pulsars. These features, together with the X-ray spectrum of the central source and surrounding nebula, provide strong evidence that a rapidly spinning neutron star is responsible for the central observed X-radiation.

Astronomers believe that an oxygen-rich supernova explosion is triggered by the collapse of the core of a massive star to form a neutron star, releasing tremendous amounts of energy in the process. "This finding is very important, since it would allow us to conclusively associate this young, oxygen-rich supernova remnant with a core collapse, massive star supernova explosion," said John P. Hughes of Rutgers University, lead author of a paper describing the research which appeared in the October 1, 2001, issue of The Astrophysical Journal.

With an age estimated at 1,600 years, G292.0+1.8 is one of three known oxygen-rich supernovas in our Galaxy. These supernovas are of great interest to astronomers because they are one of the primary sources of the heavy elements necessary to form planets and people.

Scattered throughout the image are bluish knots of emission containing material that is highly enriched in oxygen, neon, and magnesium produced deep within the original star and ejected by the supernova explosion. Elsewhere in the image one can trace whitish colored regions (like the thin, nearly horizontal filaments just above the purple nebula) and yellow regions (scattered internally, and around the periphery). This material is of a more standard composition without the enrichment seen elsewhere and represents either the pre-existing surrounding matter or the outer layers of the star itself, lost at an earlier time before the star exploded as a supernova.

The research team, which also included Patrick Slane (Smithsonian Astrophysical Observatory), David Burrows, Gordon Garmire, and John Nousek (Penn State University), Charles Olbert and Jonathan Keohane (North Carolina School of Science and Mathematics), used the Advanced CCD Imaging Spectrometer instrument to observe G292.0+1.8 on March 11, 2000.

NOTE:The Chandra results prompted a team of radio astronomers led by Fernando Camilo of Columbia University to use the Parkes radio telescope in Australia to observe the pointlike X-ray source in G292.0+1.8. On October 3, 2001 they discovered that it is a radio pulsar with a period of 135 milliseconds.

Fast Facts for G292.0+1.8:
Credit  NASA/CXC/Rutgers/J.Hughes et al.
Scale  Image is 9 arcmin across.
Category  Supernovas & Supernova Remnants
Coordinates (J2000)  RA 11h 24m 36.00s | Dec -59° 16' 00.00"
Constellation  Centaurus
Observation Dates  March 11, 2000
Observation Time  12 hours
Obs. IDs  126
Color Code  Intensity
Instrument  ACIS
References J.P. Hughes et al. 2001, Astrophys.J. 559, L153
Distance Estimate  20,000 light years
Release Date  October 22, 2001