News by Date
News by Category
Solar System
Stars
White Dwarfs
Supernovas
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Quasars
Galaxy Clusters
Cosmology/Deep Field
Miscellaneous
Press Resources
Status Reports
Press Advisories
Image Releases
Release Guidelines
Image Use Policy
NASA TV
Biographies/Interviews
Web Shortcuts
Chandra Blog
RSS Feed
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
Related Links

Chandra @ NASA
Visit the Chandra pages at the NASA portal (opens in new window)
Image Use
Image Use Policy & Request Form
Guidelines for utilizing images, applets, movies, and animations featured in this Web Site.
Cosmic Heavyweights in Free-for-all

For Release: April 16, 2009

CXC

PSR J0108-1431
Credit: X-ray (NASA/CXC/IfA/C. Ma et al.); Optical (NASA/STScI/IfA/C. Ma et al.)
Press Image and Caption

The most crowded collision of galaxy clusters has been identified by combining information from three different telescopes. This result gives scientists a chance to learn what happens when some of the largest objects in the Universe go at each other in a cosmic free-for-all.

Using data from NASA's Chandra X-ray Observatory, Hubble Space Telescope and the Keck Observatory on Mauna Kea, Hawaii, astronomers were able to determine the three-dimensional geometry and motion in the system MACSJ0717.5+3745 (or MACSJ0717 for short) located about 5.4 billion light years from Earth.

The researchers found that four separate galaxy clusters are involved in a triple merger, the first time such a phenomenon has been documented. Galaxy clusters are the largest objects bound by gravity in the Universe.

In MACSJ0717, a 13-million-light-year-long stream of galaxies, gas and dark matter - known as a filament - is pouring into a region already full of matter. Like a freeway of cars emptying into a full parking lot, this flow of galaxies has caused one collision after another.

"In addition to this enormous pileup, MACSJ0717 is also remarkable because of its temperature," said Cheng-Jiun Ma of the University of Hawaii and lead author of the study. "Since each of these collisions releases energy in the form of heat, MACS0717 has one of the highest temperatures ever seen in such a system."

While the filament leading into MACJ0717 had been previously discovered, these results show for the first time that it was the source of this galactic pummeling. The evidence is two-fold. First, by comparing the position of the gas and clusters of galaxies, the researchers tracked the direction of clusters' motions, which matched the orientation of the filament in most cases. Secondly, the largest hot region in MACSJ0717 is where the filament intersects the cluster, suggesting ongoing impacts.

"MACSJ0717 shows how giant galaxy clusters interact with their environment on scales of many millions of light years," said team member Harald Ebeling, also from University of Hawaii. "This is a wonderful system for studying how clusters grow as material falls into them along filaments."

Computer simulations show that the most massive galaxy clusters should grow in regions where large-scale filaments of intergalactic gas, galaxies, and dark matter intersect, and material falls inward along the filaments.

"It's exciting that the data we get from MACSJ0717 appear to beautifully match the scenario depicted in the simulations," said Ma.

Multiwavelength data were crucial for this work. The optical data from Hubble and Keck give information about the motion and density of galaxies along the line of sight, but not about their course perpendicular to that direction. By combining the X-ray and optical data, scientists were able to determine the three-dimensional geometry and motion in the system.

People Who Read This Also Read...