X-ray Images
Chandra Mission
X-ray Astronomy
Chandra People
Chandra in HD
Standard Definition
The Invisible Sky
Two Inch Universe
By Date/Category
Other Features
Animations & Video
Special Features
3D Files and Resources
Q & A
Acronym Guide
Further Reading
Desktop Images
iPhone Wallpapers
By Date/Category
Image Handouts
Chandra Lithographs
Chandra Infographics
Educational Activities
Printable Games
Chandra Fact Sheets
Entire Collection
By Date
By Category
Web Shortcuts
Chandra Blog
RSS Feed
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
Problems Viewing?
Having trouble viewing a movie? Make sure you update your video plug-ins. Visit our download center for help.
More Information
Groups & Clusters of Galaxies
X-ray Astronomy Field Guide
Groups & Clusters of Galaxies
Questions and Answers
Groups & Clusters of Galaxies
Chandra Images
Groups & Clusters of Galaxies
Animations & Video: Groups & Clusters of Galaxies
Click for high-resolution animation
1. Tour of Abell 3411 and Abell 3412
QuicktimeMPEG There are many extraordinary things in the Universe. For example, astronomers have found many examples of supermassive black holes erupting in powerful outbursts that can stretch for millions of miles. They have also seen galaxy clusters — the largest structures in the Universe held together by gravity — smash into one another, releasing amazing amounts of energy.

For the first time, however, astronomers have found out what happens when two of these spectacular events join forces. Abell 3411 and Abell 3412 are a pair of colliding galaxy clusters located about 2 billion light years from Earth. By combining X-rays from Chandra with data from other telescopes, astronomers were able to probe what was really happening in this remarkable system.

They found evidence that supermassive black holes have erupted within the merging clusters. At least one of these black hole eruptions has produced a tightly-wound, rotating magnetic funnel, which in turn has created a jet of high-speed and energetic particles.

These pumped up particles have then been swept up in the collision between Abell 3411 and Abell 3412, creating a cosmic double whammy. The result of all of this? The creation of a stupendous particle accelerator that produces energies far above anything that could ever be created here on Earth.
[Runtime: 02:19]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
2. Tour of CL J1001
QuicktimeMPEG Galaxy clusters are incredibly important objects in the Universe since they are the largest objects in the Universe held together by gravity. Many galaxy clusters contain hundreds or even thousands of galaxies, enormous amounts of hot gas, and giant reservoirs of dark matter. For as much as they already know about galaxy clusters, astronomers are still seeking to learn more. This includes learning about how galaxy clusters first formed in the early Universe.

A new discovery by a team of researchers may represent an important step in that direction. Using NASA's Chandra X-ray Observatory and several other telescopes on the ground and in space, researchers recently found a galaxy cluster that is about 11.1 billion light years from Earth. In addition to its remarkable distance, this cluster, known as CL J1001+0220, also displays some intriguing qualities. For example, astronomers find that the core of this cluster is ablaze with star formation. This is quite different from other galaxy clusters observed by astronomers, where star formation rates are very low. It may be that this galaxy cluster represents a brief, but important, stage of the evolution where a cluster transitions from a still-forming cluster into a mature one. Astronomers hope that they will learn a lot about the formation of clusters and the galaxies they contain by studying this object.
[Runtime: 02:19]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
3. Tour of Galaxy Clusters
QuicktimeMPEG Since its discovery almost two decades ago, dark energy has remained one of the biggest mysteries in science. Astronomers know that dark energy is responsible for the current accelerating expansion of the Universe, but they are still trying to determine just what it is.

A new study tries to tackle the questions surrounding dark energy by examining properties of X-ray emission from galaxy clusters. Galaxy clusters are the largest structures in the Universe held together by gravity and they contain enormous amounts of hot gas that glow in X-ray light. Researchers know that galaxy clusters possess another interesting quality: the more massive ones are simply scaled up versions of the smaller ones -- like Russian dolls that fit inside one another.

Astronomers can take advantage of this fact to use galaxy clusters as cosmic distance markers. Since dark energy is pushing the Universe apart, the different distances of these galaxy clusters reveals clues about the nature of dark energy itself.

The latest research, looking at over 300 galaxy clusters, shows that dark energy does not appear to change over billions of years. This supports the idea that dark energy is what Einstein called the cosmological constant, which is the equivalent to the energy of empty space. While this new study is very exciting, there is still much to be learned before we know exactly what dark energy is, how it has affected the Universe in the past, and what it might do in the future.
[Runtime: 02:32]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
4. Tour of Frontier Fields
QuicktimeMPEG Galaxy clusters are enormous collections of hundreds or even thousands of galaxies and vast reservoirs of hot gas embedded in massive clouds of dark matter. These cosmic giants are not merely novelties of size or girth. Instead, they represent pathways to understanding how our entire universe evolved in the past and where it may be heading in the future.

To learn more about galaxy clusters, including how they grow via collisions, astronomers have collected large quantities of data from some of the world's most powerful telescopes. They have used telescopes that detect different kinds of light to study a half dozen galaxy clusters in depth. The name for this galaxy cluster project is the "Frontier Fields".

Two of these Frontier Fields galaxy clusters, going by their abbreviated names, are MACS J0416 and MACS J0717. Located about 4.3 billion light years from Earth, MACS J0416 is a pair of colliding galaxy clusters that will eventually combine to form an even bigger cluster. MACS J0717, one of the most complex and distorted galaxy clusters known, is the site of a collision between four clusters. It is located about 5.4 billion light years away from Earth.

In the new Frontier Fields studies, astronomers combined data from NASA's Chandra X-ray Observatory and Hubble Space Telescope along with information in radio waves from the NSF's Very Large Array and the Giant Metrewave Radio Telescope in India. They have found new details about both of these complex and colliding systems. Astronomers will continue to analyze the vast amounts of data from the Frontier Fields, which will help them learn more about these gigantic and important objects.
[Runtime: 03:03]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
5. A Tour of IDCS J1426.5+3508
QuicktimeMPEG How quickly can galaxy clusters - the Universe's largest objects held together by gravity - form? Astronomers don't know exactly, but by examining some of these mega-structures in the early Universe they can begin to figure it out. The galaxy cluster called IDCS J1426.5+3508 is one that helps astronomers do just that. This galaxy cluster was first discovered by the Spitzer Space Telescope in 2012. Follow-on observations by the Hubble Space Telescope and the Keck Observatory in Hawaii pinpointed its distance. Radio data from the CARMA telescope array in California then suggested this galaxy cluster was very massive. New X-ray data from Chandra confirmed that IDCS J1426 was indeed enormous, weighing in at a whopping 500 trillion times the mass of our Sun. This is the most massive galaxy cluster discovered at this epoch in the early Universe - just 3.8 billion light years after the Big Bang. While this sounds like an incredibly long time, it is relatively quick in terms of forming something the size of IDCS J1426. By studying this galaxy cluster, astronomers hope to better understand how these colossal objects formed and evolved in the young Universe.
[Runtime: 02:29]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
6. A Tour of Zwicky 8338
QuicktimeMPEG An extraordinary ribbon of hot gas trailing behind a galaxy like a tail has been discovered using data from NASA's Chandra X-ray Observatory. This ribbon, or X-ray tail, is likely due to gas stripped from the galaxy as it moves through a vast cloud of hot intergalactic gas. With a length of at least 250,000 light years, it is likely the largest such tail ever detected.

The tail is located in the galaxy cluster Zwicky 8338, which is almost 700 million light years from Earth. The length of the tail is more than twice the diameter of the entire Milky Way galaxy and contains gas with temperatures of about 10 million degrees.

Galaxy clusters are the largest structures in the Universe held together by gravity. They consist of hundreds, or even thousands, of galaxies, enormous pools of hot gas, and vast amounts of unseen dark matter. Since galaxy clusters are so enormous, they play a critical role inunderstanding how our Universe evolves. X-ray tails like the one in Zwicky 8338 show how the galaxies within a cluster can transform over time. This gives scientists important information in understanding these critical cosmic systems.
[Runtime: 02:19]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
7. Tour of SDSS J103842.59+484917.7
QuicktimeMPEG One hundred years ago this month, Albert Einstein published his theory of general relativity, one of the most important scientific achievements in the last century. A key result of Einstein's theory is that matter warps space-time. This means that a massive object can bend the light we see on Earth from very distant objects, say, faraway galaxies. Astronomers have found many examples of this phenomenon, known as "gravitational lensing." Gravitational lensing is more than just a cosmic illusion, however. Instead, gravitational lensing provides astronomers with a way of probing extremely distant galaxies and groups of galaxies in ways that would otherwise be impossible even with the most powerful telescopes.

The latest results from the "Cheshire Cat" group of galaxies show how manifestations of Einstein's 100-year-old theory can lead to new discoveries today. Astronomers have given the group this name because to many it looks like a smiling cat from the famous story of "Alice in Wonderland." In a twist that perhaps Lewis Carroll could appreciate, some of the feline features in this cosmic Cheshire Cat are actually distant galaxies whose light has been stretched and bent by the large amounts of mass in the system.

Astronomers have studied the Cheshire Cat in optical light from telescopes like the Hubble Space Telescope and the Gemini Observatory on Mauna Kea. They have also used the Chandra X-ray Observatory to study it in higher-energy light. X-rays from Chandra reveal gas in between the galaxies that has been heated to millions of degrees. This superhot gas is evidence that the two eyes of the Cheshire Cat, and the small galaxies associated with them, are racing toward one another at very high speeds. In fact, astronomers estimate that these galaxies will merge in about one billion years. X-ray data also show that the left "eye" of the Cheshire Cat group contains an actively feeding supermassive black hole at the center of the galaxy. Scientists will continue to study this system and others like it to explore all of the ways Einstein's theory from a century ago helps explain our view of the Universe today.
[Runtime: 03:14]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
8. Banking X-ray Data for the Future
QuicktimeMPEG Archives, in their many forms, save information from today that people will want to access and study in the future. This is a critical function of all archives, but it is especially important when it comes to storing data from today's modern telescopes.

NASA's Chandra X-ray Observatory has collected data for over sixteen years on thousands of different objects throughout the Universe. The science team has immediate access to the data, and then a year after observation all of the data goes into a public archive where it can be folded into later studies.

To celebrate October being American Archive Month a collection of images from the Chandra archive is being released. Some of these objects may be familiar to readers, while others may be unknown. None of these images, in the exact form, has been released before.

By combining data from different observation dates, new perspectives of cosmic objects can be created. With archives like those from Chandra and other major observatories, such vistas will be available for future exploration.
[Runtime: 01:27]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
9. Tour of Phoenix Cluster
QuicktimeMPEG In 2012, astronomers announced the discovery of an extraordinary object. This galaxy cluster, which was found about 5.7 billion light years from Earth, shattered several important astronomical records. For example, it had the highest rate of cooling hot gas and star formation ever seen in the center of a galaxy cluster. Chandra observations also showed that it was the most powerful producer of X-rays of all known clusters. And, the rate at which hot gas is cooling in the center of the cluster was also the largest ever observed. The astronomers that found it nicknamed this system the Phoenix Cluster because it was found in the constellation of the Phoenix, and some of its behaviors resembled a galaxy cluster being brought back to life through new star formation.

Three years later, astronomers have gathered even more data on the Phoenix Cluster in X-ray, optical and ultraviolet light. These new observations have helped astronomers better understand what's happening in this object. They see holes, or cavities, in the X-ray data from Chandra that are surrounded by massive filaments of gas and dust. The combination of the X-ray cavities with the filaments may be responsible for the ultra-high rate of new stars forming in the Phoenix Cluster. Overall, the extreme properties of the Phoenix cluster system are providing new insights into various astrophysical problems, including the formation of stars, the growth of galaxies and black holes, and the co-evolution of black holes and their environment.
[Runtime: 01:56]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
10. Tour of Abell 1033
QuicktimeMPEG Galaxy clusters are the largest structures in the Universe held together by gravity. They consist of huge reservoirs of hot gas that glow in X-ray light as well as hundreds or even thousands of individual galaxies, plus unseen dark matter. Understanding how clusters grow is critical to tracking how the Universe itself evolves over time.

A new result involving the system named Abell 1033 is providing another piece to this astronomical puzzle. Located about 1.6 billion light years from Earth, Abell 1033 is the site of the collision of two galaxy clusters. By combining X-ray data from Chandra along with radio and optical data, astronomers have found evidence that Abell 1033 is what is called a "radio phoenix." What does this mean? Astronomers think a supermassive black hole close to the center of Abell 1033 underwent an eruption in the past. Streams of high-energy electrons filled a region hundreds of thousands of light years across and produced a cloud of bright radio emission. This cloud faded over a period of millions of years as the electrons lost energy and the cloud expanded.

The radio phoenix emerged when another cluster of galaxies slammed into the original cluster, sending shock waves through the system. These shock waves, similar to sonic booms produced by supersonic jets, passed through the dormant cloud of electrons. The shock waves compressed the cloud and re-energized the electrons, which caused the cloud to once again shine at radio frequencies. Just as the phoenix rises from its ashes in the stories of mythology, so too does it appear Abell 1033 has undergone an amazing rebirth.
[Runtime: 02:06]
(NASA/CXC/A. Hobart)

Related Chandra Images: