

The most distant galaxy cluster yet has been discovered by combining data from NASA's Chandra X-ray Observatory and optical and infrared telescopes. The cluster is located about 10.2 billion light years away, and is observed as it was when the Universe was only about a quarter of its present age. The galaxy cluster, known as JKCS041, beats the previous record holder by about a billion light years. Galaxy clusters are the largest gravitationally bound objects in the Universe.

JKCS041 was originally detected in 2006 in a survey from the United Kingdom Infrared Telescope (UKIRT). The Chandra data were the final - but crucial - piece of evidence that showed JKCS041 was, indeed, a genuine galaxy cluster. Clusters of galaxies have such strong gravitational fields that they can serve as a bottle for very high temperature gas. These gases often emit x-ray light that can be detected by observatories such as Chandra. The discovery of such a high-temperature gas between the galaxies in JKCS041 supports the original idea that the galaxies seen in that direction are, in fact, members of a cluster. From the X-ray information, astronomers can also measure the total mass of the entire cluster that is responsible for creating the gravitational field holding the gas in place.

Problem 1 - The Chandra satellite detected x-rays coming from the region of the sky containing the galaxy cluster JKS041. The electrons in the gas are emitting the X-rays, and colliding at high speed with the protons in the gas. The energy of the x-rays at the time they were emitted by the hot gas was 21,400 electron Volts (eV). This energy is shared equally between the electrons and protons. The speed of a proton is related to its kinetic energy by E $=1 / 2 \mathrm{mV}{ }^{2}$ where $E$ is the energy in Joules, $V$ is the proton speed in meters/sec, and $m$ is the mass of a proton ( $\mathrm{m}=1.7 \times 10^{-27} \mathrm{~kg}$ ). About how fast are the protons moving? (Note: $1 \mathrm{eV}=$ $1.6 \times 10^{-19}$ Joules)

Problem 2 -The escape velocity (in $\mathrm{km} / \mathrm{s}$ ) from a body is given by $\mathrm{V}=0.17(\mathrm{M} / \mathrm{R})^{1 / 2}$ where M is the mass in multiples of the mass of our sun, and $R$ is the average distance, in light years, between the body and the gas particle. Example, for the Milky Way, $R=50,000$ light years and $M=300$ billion so $V=420 \mathrm{~km} / \mathrm{sec}$. Compared to the sun, about how much mass do you need to confine the gas cloud observed by Chandra, if the cluster of galaxies has a radius of about 1 million light years $A$ ) in units of the sun's mass? B) In terms of the number of Milky Way galaxies where 1 Milky Way is about $2 \times 10^{12}$ solar masses?

Problem 1 - The Chandra satellite detected x-rays coming from the region of the sky containing the galaxy cluster JKS041. The electrons in the gas are emitting the X-rays, and colliding at high speed with the protons in the gas. The energy of the x-rays at the time they were emitted by the hot gas was 21,400 electron Volts (eV). This energy is shared equally between the electrons and protons. The speed of a proton is related to its kinetic energy by E $=1 / 2 \mathrm{mV}^{2}$ where E is the energy in Joules, V is the proton speed in meters/sec, and m is the mass of a proton ( $\mathrm{m}=1.7 \times 10^{-27} \mathrm{~kg}$ ). About how fast are the protons moving that are producing the X-ray light seen by Chandra? (Note: $1 \mathrm{eV}=1.6 \times 10^{-19}$ Joules)

Answer: The information given in the problem is that:
The x-ray energy is $21,400 \mathrm{eV}$
$1 \mathrm{eV}=1.6 \times 10^{-19}$ Joules of energy
The electrons carry $1 / 2$ of the x-ray energy
The protons carry $1 / 2$ of the $x$-ray energy
The mass of a proton is $1.7 \times 10^{-27}$ kilograms
The formula requires the energy, E , in units of Joules, so we first have to convert $21,400 \mathrm{eV}$ to Joules. $E=21,400 \mathrm{eV} \times\left(1.6 \times 10^{-19}\right.$ Joules $\left./ 1 \mathrm{eV}\right)$ $=3.4 \times 10^{-15}$ Joules.
This is the total energy, so protons only carry half of this so that $E=1.7 \times 10^{-15}$ Joules
Next, we use the formula $E=1 / 2 m V^{2}$ and solve for $V$ to get $V=(2 E / m)^{1 / 2}$ and substitute the known values for m and E to get $\mathrm{V}=\left(2 \times 1.7 \times 10^{-15} \text { Joules/ } 1.7 \times 10^{-27} \mathrm{~kg}\right)^{1 / 2}=\mathbf{1 , 4 0 0 , 0 0 0}$ $\mathrm{m} / \mathrm{sec}$ or $1,400 \mathrm{~km} / \mathrm{s}$.

Problem 2 -The escape velocity (in $k m / s$ ) from a body is given by $V=0.17(M / R)^{1 / 2}$ where $M$ is the mass in multiples of the mass of our sun, and $R$ is the average distance, in light years, between the body and the gas particle. Example, for the Milky Way, $R=50,000$ light years and $M=300$ billion so $V=420 \mathrm{~km} / \mathrm{sec}$. Compared to the sun, about how much mass do you need to confine the gas cloud observed by Chandra, if the cluster of galaxies has a radius of about 1 million light years, A) in units of the sun's mass? B) In terms of the number of Milky Way galaxies where 1 Milky Way is about $2 \times 10^{12}$ solar masses?

Answer: Solve the stated equation for $M$ to get $M=R(V / 0.17)^{2}$. For $R=1$ million light years and $V=1,400 \mathrm{~km} / \mathrm{sec}$, then $A$ ) $\quad M=70$ trillion suns and $B$ ) $N=70$ trillion suns $x$ ( 1 Milky Way/2 trillion suns) so this is about $\mathbf{3 5}$ Milky Ways. Note, some of this mass is actually in the 16 large galaxies that make up the cluster. Some of it is in the hot cloud of $x$-ray emitting gas, and some of it may be in Dark Matter.

Note: For more information about this discovery, read the Chandra Press release at: http://www.nasa.gov/mission_pages/chandra/news/09-086.html

According to the research paper by S. Andreon, B. Maughan, G. Trinchieri, and J. Kirk "JKCS041: a color-detected galaxy cluster at $\mathrm{z}=1.9$ with deep potential well as confirmed by x -ray data" published in the journal Astronomy and Astrophysics, October 2009, the estimated mass based on careful modeling of the data indicated a range between 30 trillion and 670 trillion suns.

