Images
X-ray Images
Chandra Mission
X-ray Astronomy
Chandra People
Podcasts
Chandra in HD
Standard Definition
The Invisible Sky
Two Inch Universe
By Date/Category
Other Features
Animations & Video
Special Features
Audio
Inspirations
3D Files and Resources
Resources
Q & A
Glossary
Acronym Guide
Further Reading
Desktop Images
iPhone Wallpapers
By Date/Category
Miscellaneous
Handouts
Image Handouts
Chandra Lithographs
Chandra Infographics
Educational Activities
Printable Games
Chandra Fact Sheets
Presentations
Entire Collection
By Date
By Category
Presentations
Web Shortcuts
Chandra Blog
RSS Feed
Chandra Mobile
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
Recent Podcast
A Tour of NGC 2276
A Tour of NGC 2276
Astronomers found that this intermediate-mass black hole is producing a jet that appears to be squelching the formation of stars around it. (2015-03-03)
Problems Viewing?
Having trouble viewing a movie? Make sure you update your video plug-ins. Visit our download center for help.
Animations & Video: Featured Image Tours
Click for high-resolution animation
1. Tour of NGC 1929
QuicktimeMPEG Audio Only The star cluster known as NGC 1929 is embedded in a cloud of gas and dust, which astronomers call the N44 nebula. Many new stars, some of them very massive, are forming within this star cluster. These massive stars produce intense radiation, expel matter at high speeds, and race through their evolution to explode as supernovas. The winds and supernova shock waves carve out huge cavities called superbubbles in the surrounding gas. X-rays from NASA's Chandra X-ray Observatory show hot regions created by these winds and shocks. Meanwhile, infrared data from NASA's Spitzer Space Telescope outline where the dust and cooler gas are found. An optical light image from a European Space Observatory telescope in Chile shows where ultraviolet radiation from hot, young stars is causing gas in the nebula to glow.
[Runtime: 1.04]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
2. Tour of NGC 3627
QuicktimeMPEG Audio Only The spiral galaxy NGC 3627 is located about 30 million light years from Earth. Astronomers recently completed a survey of galaxies to look for supermassive black holes. Of the 62 galaxies, 37 - including NGC 3627 - were found to have X-ray sources at their centers and are candidates for being powered by supermassive black holes. Seven of these 37 were previously unknown. This result confirms other Chandra studies that show X-ray surveys are particularly good at finding supermassive black holes that are relatively inactive.
[Runtime: 00:43]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
3. Tour of NGC 4178
QuicktimeMPEG Audio Only A supermassive black hole with one of the lowest masses ever observed has been spotted in the middle of a galaxy, using NASA's Chandra X-ray Observatory and several other observatories. The black hole is located in the middle of the spiral galaxy NGC 4178, shown in this optical image. The inset shows an X-ray source at the position of the black hole, located at the center of a Chandra image. An analysis of the Chandra data, along with infrared data from the Spitzer Space Telescope and radio data from the Very Large Array suggests that the black hole has a mass less than about 200,000 times that of the sun. This is lower than the mass of most supermassive black holes. The host galaxy is of a type not expected to harbor supermassive black holes, suggesting that this black hole, while related to its supermassive cousins, may have a different origin.
[Runtime: 1.05]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
4. Tour of NGC 4342 & NGC 4291
QuicktimeMPEG Astronomers think that just about every galaxy has a giant black hole at its center. For quite some time, the prevailing wisdom has been that the mass of these supermassive black holes is tied to the size of the tightly packed group of stars around the galaxy's center known as its bulge. Two objects, however, have been discovered that are challenging this idea. NGC 4342 and NGC 4291 are relatively nearby galaxies, which means astronomers can get particularly good views of them. New data from NASA's Chandra X-ray Observatory revealed the presence of massive envelopes of dark matter around each galaxy. The researchers think the growth of the supermassive black holes may, in fact, be tied more closely to the amount and distribution of the dark matter in each galaxy, rather than the mass of stars contained in their bulges as previously believed.
[Runtime: 00.57]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
5. Tour of NGC 922
QuicktimeMPEG Audio Only In this holiday season of home cooking and carefully-honed recipes, some astronomers are asking: what is the best mix of ingredients for stars to make the largest number of plump black holes? They are tackling this problem by studying the number of black holes in galaxies with different compositions. One of these galaxies is the ring galaxy NGC 922 that was formed by the collision between two galaxies. This collision triggered the formation of new stars in the shape of a ring. Some of these were massive stars that evolved and collapsed to form black holes. Seven of the sources seen in the Chandra image are thought to contain stellar-mass black holes that are at least ten times more massive than the sun, which places them in the upper range for this class of black hole. By comparing NGC 922 to galaxies with different mixtures of elements, astronomers hope to master the ideal recipe for what it takes to make these large black holes.
[Runtime: 1.09]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
6. Tour of Phoenix Cluster
QuicktimeMPEG Astronomers have found an extraordinary galaxy cluster -- one of the largest objects in the Universe -- that is breaking several important cosmic records. This galaxy cluster has been dubbed the "Phoenix Cluster" because not only is it located in the constellation of the Phoenix, it also possesses some remarkable properties of the mythological creature. While galaxies at the center of most clusters may have been dormant for billions of years, the central galaxy in this cluster seems to have come back to life with a new burst of star formation. The stars are forming at the highest rate ever observed for the middle of a galaxy cluster. Observations with NASA's Chandra X-ray Observatory, the NSF's South Pole Telescope and eight other world-class observatories were used to study this object. Taken together, the data from these telescopes also show the Phoenix Cluster is the most powerful producer of X-rays and among the most massive of galaxy clusters. It also has the highest rate of hot gas cooling in the central regions of a cluster ever observed. The new results from the Phoenix Cluster, which is located about 5.7 billion light years from Earth, may force astronomers to rethink how galaxy clusters, and the galaxies that inhabit them, evolve.
[Runtime: 01:21]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
7. Tour of PKS 0745
QuicktimeMPEG Audio Only Some of the biggest black holes in the Universe may actually be even bigger than previously thought. This is according to a new survey of 18 of the largest known black holes using data from the Chandra X-ray Observatory and other telescopes. A group of astronomers studied black holes found in the centers of galaxy clusters that are filled with hot gas. They came up with the new estimates of the black hole masses by looking at the amount of X-rays and radio waves they generate. The researchers found that the black holes in the survey may be about ten times more massive than previously thought. This includes at least ten that could weigh between 10 and 40 billion times the mass of the sun, making them "ultramassive" black holes.
[Runtime: 00:52]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
8. Tour of Sagittarius A*
QuicktimeMPEG Audio Only Over several years, astronomers have noticed flares in X-ray light from the black hole at the center of the Milky Way. NASA's Chandra X-ray Observatory detected these flares during the telescope's periodic observations of the black hole. A new study suggests that these flares may occur when the black hole - known as Sagittarrius A* or Sgr A* for short -- consumes an asteroid at least six miles wide. If an asteroid gets too close to another object like a star or planet, it can be thrown into an orbit headed toward Sgr A*. Once the asteroid passes within about 100 million miles of the black hole, it is torn into pieces by the black hole's tidal forces. Eventually, these fragments are vaporized by friction as they pass through the hot, thin gas flowing onto Sgr A*. This is what produces an X-ray flare. If confirmed, this result could mean that there is a cloud around Sgr A* containing trillions of asteroids and comets. This would be an exciting development for the many scientists who are fascinated by the Milky Way's giant black hole and the environment around it.
[Runtime: 01:17]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
9. Tour of SN 2010jl
QuicktimeMPEG Audio Only Why are some supernovas much more powerful than others? Astronomers are still trying to figure that out, but one new discovery may help answer the question. On November 3, 2010, a supernova was discovered in a galaxy located about 160 million light years from Earth. When astronomers used the Chandra X-ray Observatory to look at it, they found some very interesting clues. The Chandra data showed evidence that the shock wave formed by the supernova was, in fact, breaking through a cocoon of gas. This cocoon was probably formed when the star expelled its outer layers before finally collapsing on itself and exploding as a supernova. By observing this supernova just weeks after the initial explosion, scientists were able to learn more about this supernova and potentially others as they try to better understand how some stars die.
[Runtime: 01:01]
(X-ray: NASA/CXC/Royal Military College of Canada/P.Chandra et al); Optical: NASA/STScI)

Related Chandra Images:

Click for high-resolution animation
10. A Tour of GRS 1915+105
QuicktimeMPEG Audio Only GRS 1915+105, or GRS 1915 for short, is a special system. Not only does it contain a black hole some 14 times more massive than the Sun in orbit with a companion star, it also has a heartbeat. Or, more exactly, it gives off X-ray pulses that resemble the pattern of a human heart, though on a much slower scale. By monitoring this system with NASA's Chandra X-ray Observatory and the Rossi X-ray Timing Explorer, astronomers were able to pick out a spike of X-rays every 50 seconds or so. Researchers have determined that this heartbeat is due to the ebb and flow of material as it circles the black hole. This result gives scientists more insight into how black holes regulate their intake and control their growth.
[Runtime: 0.55]
(NASA/CXC/Harvard/J.Neilsen et al & A.Hobart)

Related Chandra Images: