By Length
Full (4-12 min)
Short (1-4 min)
By Date
2023 | 2022 | 2021 | 2020
2019 | 2018 | 2017 | 2016
2015 | 2014 | 2013 | 2012
2011 | 2010 | 2009 | 2008 | 2007 | 2006
By Category
Solar System
White Dwarfs
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Groups of Galaxies
Cosmology/Deep Field
Space Scoop for Kids!
Chandra Sketches
Quick Look
Visual Descriptions
How To
RSS Reader
Audio-only format podcast
Web Shortcuts
Chandra Blog
RSS Feed
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader

A Tour of Cyg X-3's Little Friend

Narrator (April Hobart, CXC): The story of how stars are born and eventually die can be a complicated one. After all, the life and death of stars is determined by many factors including its mass and environment. Take, for example, Cygnus X-3. For decades, astronomers have studied this object and determined that it is a so-called X-ray binary. This means that it is, in fact, a pair of objects. One of the objects is a compact source - either a neutron star or black hole that was produced by the death of a massive star - that is pulling material away from the other object, a living companion star.

In 2003, astronomers noticed something else when observing Cygnus X-3 with Chandra. They saw another source very close to Cygnus X-3 on the sky. Thanks to Chandra's unparalleled X-ray vision, they were able to resolve this source even though it was a mere 16 arcseconds away on the sky. To put it another way, the separation of Cygnus X-3 and this new source is equivalent to the width of a penny about 800 feet away. Astronomers nicknamed this new object the "Little Friend."

Recently, a team of astronomers has combined Chandra data with radio data from the Submillimeter Array to learn more about both Cygnus X-3 and the Little Friend. They determined that the Little Friend is a Bok globule, which is a small, dense, very cold cloud. The radio data shows that the Little Friend is producing jets, indicating that a new star is forming inside. This unusual configuration of an X-ray binary so close to a Bok globule provides astronomers with a new way of studying how stars - or at least some of them - form.

Return to Podcasts