Images
X-ray Images
Chandra Mission
X-ray Astronomy
Chandra People
Podcasts
Chandra in HD
Standard Definition
The Invisible Sky
Two Inch Universe
By Date/Category
Other Features
Animations & Video
Special Features
Audio
Resources
Q & A
Glossary
Acronym Guide
Further Reading
Desktop Images
iPhone Wallpapers
By Date/Category
Miscellaneous
Handouts
Image Handouts
Chandra Lithographs
Educational Activities
Printable Games
Chandra Fact Sheets
Presentations
Entire Collection
By Date
By Category
Presentations
Web Shortcuts
Chandra Blog
RSS Feed
Chandra Mobile
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
Problems Viewing?
Having trouble viewing a movie? Make sure you update your video plug-ins. Visit our download center for help.
More Information
Supernovas & SNR
X-ray Astronomy Field Guide
Supernovas & SNR
Questions and Answers
Supernovas & SNR
Chandra Images
Supernovas & SNR
Animations & Video: Supernovas & Supernova Remnants
Click for high-resolution animation
1. Simulation of Kepler supernova explosion
QuicktimeMPEG This video shows a simulation of the Kepler supernova as it interacts with material expelled by the giant star companion to the white dwarf before the latter exploded. It was assumed that the bulk of this material was expelled in a disk-like structure, with a gas density that is ten times higher at the equator, running from left to right, than at the poles. The colors represent the density of the gas, using a rainbow distribution, with red showing the highest densities, followed by orange, yellow and green, then blue showing the lowest densities. Note the dense structure on the left and right of the explosion. This simulation was performed in two dimensions, so this is a cross-section of the explosion. The simulation has to be projected into three dimensions to compare with observations. The good agreement with Chandra and Spitzer data supports the author's interpretation of the disk-like structure they observed.
[Runtime: 00:13]
(NASA/CXC/NCSU/J.Blondin et al.)

Related Chandra Images:

Click for high-resolution animation
2. Tour of W49B
QuicktimeMPEG Audio Only The supernova remnant known as W49B is, let's say, a bit unorthodox looking. Many supernova remnants appear rather spherical in shape. This is in large part because astronomers think that most supernovas explode more or less evenly in all directions. W49B, however, is an exception to that rule. Researchers instead think that the star that created W49B ejected more material at higher speeds from its poles than from its equator during its explosion. The result is this unusual barrel-shaped remnant we see today. While most supernovas leave behind a dense rotating core called a neutron star, there is no evidence that one is present within W49B. This and other evidence suggest that an even more exotic object, that is, a black hole, was produced during the explosion. Since W49B's explosion occurred about a thousand years ago as seen from Earth, this means this may be the most recent black hole formed in our Milky Way galaxy.
[Runtime: 01.13]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
3. Learn About Supernovas
QuicktimeMPEG Audio Only Supernovas are some of the most dramatic events in the cosmos. These titanic events send shockwaves rumbling through space and create giant bubbles of gas that have been superheated to millions of degrees.
Chandra has captured supernovas and the remnants they've left behind in spectacular X-ray images.
Chandra's images help to determine the energy, composition and dynamics of these celestial explosions.
See supernovas through Chandra's eyes.
[Runtime: 01:31]
(NASA/CXC/A. Hobart)

Click for high-resolution animation
4. Tour of Kepler's Supernova Remnant
QuicktimeMPEG Audio Only This image of Kepler's supernova remnant shows the expanding ball of debris from a supernova explosion in our galaxy. The supernova itself was seen in 1604 by Johannes Kepler and others. The different colors in the Chandra X-ray data show different energies in the supernova remnant, and optical data from the Digitized Sky Survey shows stars in the field. The Kepler supernova was the thermonuclear explosion of a white dwarf. New analysis suggests that the supernova explosion was not only more powerful, but might have also occurred at a greater distance, than previously thought.
[Runtime: 00:43]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
5. Tour of IGR J11014-6103
QuicktimeMPEG Has the speediest pulsar been found? That's the question that astronomers are asking after three different telescopes looked at the pulsar known as IGR J11014-6103. This pulsar was found racing away from a supernova remnant located about 30,000 light years from Earth. An image from the European Space Agency's XMM-Newton satellite shows a glowing debris field in X-rays. This is the remains of a massive star that exploded thousands of years before. Using NASA's Chandra X-ray Observatory, researchers were able to focus their attention on a small, comet-shaped X-ray source outside the boundary of this supernova remnant. It appears that this object, thought to be a rapidly spinning, incredibly dense star - which astronomers call a "pulsar" -- was ejected during the supernova explosion. Researchers calculate that this pulsar may be dashing away from the supernova at speeds of about 6 million miles per hour. If this result is confirmed, it would make this pulsar the fastest ever seen.
[Runtime: 01:08]
(NASA/CXC/A. Hobart)

Click for high-resolution animation
6. Tour of SN 2010jl
QuicktimeMPEG Audio Only Why are some supernovas much more powerful than others? Astronomers are still trying to figure that out, but one new discovery may help answer the question. On November 3, 2010, a supernova was discovered in a galaxy located about 160 million light years from Earth. When astronomers used the Chandra X-ray Observatory to look at it, they found some very interesting clues. The Chandra data showed evidence that the shock wave formed by the supernova was, in fact, breaking through a cocoon of gas. This cocoon was probably formed when the star expelled its outer layers before finally collapsing on itself and exploding as a supernova. By observing this supernova just weeks after the initial explosion, scientists were able to learn more about this supernova and potentially others as they try to better understand how some stars die.
[Runtime: 01:01]
(X-ray: NASA/CXC/Royal Military College of Canada/P.Chandra et al); Optical: NASA/STScI)

Related Chandra Images:

Click for high-resolution animation
7. Tour of Cassiopeia A
QuicktimeMPEG Audio Only Over three hundred years ago, a very large star ran out of fuel and collapsed. This event created an explosion, known as a supernova, which then produced an expanding field of debris. This debris field is what we now call the Cassiopeia A supernova remnant. Astronomers studying this supernova remnant have found something very interesting. They determined that some of the inner layers of the star before the supernova explosion are now found on the outer edges of the supernova remnant. In other words, it appears that the star has turned itself out, so to speak, at the end of its life. Supernovas and the remnants they create spread elements like carbon, oxygen, and iron into the next generation of stars and planets. Therefore, understanding exactly how these stars explode is very important for knowing how the Universe has gotten to where it is today.
[Runtime: 01:02]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
8. Chandra X-ray Element Map
QuicktimeMPEG This video of the Chandra X-ray images shows the distribution of iron, sulfur and magnesium in the supernova remnant. The data show that the distributions of sulfur and silicon are similar, as are the distributions of magnesium and neon. Oxygen, which according to theoretical models is the most abundant element in the remnant, is difficult to detect because the X-ray emission characteristic of oxygen ions is strongly absorbed by gas in along the line of sight to Cas A, and because almost all the oxygen ions have had all their electrons stripped away.
[Runtime: 00:16]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
9. Tour of G350.1-0.3
QuicktimeMPEG Audio Only G350.1+0.3 is a young and exceptionally bright supernova remnant located nearly 15,000 light years from Earth toward the center of the Milky Way. While many supernova remnants are nearly circular, G350.1+0.3 has a strikingly unusual appearance. X-rays from Chandra and infrared data from Spitzer outline this bizarre shape, which astronomers think comes from the stellar debris field expanding into a nearby cloud of cold gas. With an age of between 600 and 1,200 years old, G350.1+0.3 is in the same time frame as other famous supernovas that formed the Crab and SN 1006 supernova remnants. However, it is unlikely that anyone on Earth would have seen the explosion because too much gas and dust lies along our line of sight to the remnant, blocking the view.
[Runtime: 00:59]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
10. Tour of SXP 1062
QuicktimeMPEG Audio Only The Milky Way galaxy has several small satellite galaxies very close to it. One of them is called the Small Magellanic Cloud. Astronomers using several telescopes - including the Chandra X-ray Observatory - spotted an unusual object in the SMC. The source is known as SXP 1062 and may be the first pulsar found within the remains of a supernova explosion. X-ray data from Chandra and XMM-Newton also show that SXP 1062 is rotating unusually slowly - about once every 18 minutes. In contrast, some pulsars are found to revolve multiple times per second, including most newly born pulsars. Scientists have determined the pulsar was born between ten and forty thousand years ago. While this may sound like a long time, it is a blink of an eye in astronomical terms. Therefore, it is a mystery why SXP 1062 has been able to slow down by so much, so quickly.
[Runtime: 01:12]
(NASA/CXC/A. Hobart)

Related Chandra Images: