Images by Date
Images by Category
Solar System
Stars
Exoplanets
White Dwarfs
Supernovas
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Quasars
Galaxy Clusters
Cosmology/Deep Field
Miscellaneous
Images by Interest
Space Scoop for Kids
4K JPG
Multiwavelength
Sky Map
Constellations
Photo Blog
Top Rated Images
Image Handouts
Desktops
Fits Files
Image Tutorials
Photo Album Tutorial
False Color
Cosmic Distance
Look-Back Time
Scale & Distance
Angular Measurement
Images & Processing
AVM/Metadata
Image Use Policy
Web Shortcuts
Chandra Blog
RSS Feed
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
Spiderweb Galaxy Field: Feasting Black Holes Caught in Galactic Spiderweb
Spiderweb Galaxy Field

  • To look for black holes around the "Spiderweb" galaxy, astronomers observed for over 8 days with NASA's Chandra X-ray Observatory.

  • Chandra revealed 14 actively growing supermassive black holes — a much higher rate than other similar samples.

  • The difference may be caused by collisions between galaxies in the forming cluster or by an excess of colder gas.

  • The "Spiderweb" gets its nickname from its appearance in some optical light images.

Often, a spiderweb conjures the idea of captured prey soon to be consumed by a waiting predator. In the case of the "Spiderweb" protocluster, however, objects that lie within a giant cosmic web are feasting and growing, according to data from NASA's Chandra X-ray Observatory.

The Spiderweb galaxy, officially known as J1140-2629, gets its nickname from its web-like appearance in some optical light images. This likeness can be seen in the inset box where data from NASA's Hubble Space Telescope shows galaxies in orange, white, and blue, and data from Chandra is in purple. Located about 10.6 billion light years from Earth, the Spiderweb galaxy is at the center of a protocluster, a growing collection of galaxies and gas that will eventually evolve into a galaxy cluster.

To look for growing black holes in the Spiderweb protocluster a team of researchers observed it for over eight days with Chandra. In the main panel of this graphic, a composite image of the Spiderweb protocluster shows X-rays detected by Chandra (also in purple) that have been combined with optical data from the Subaru telescope on Mauna Kea in Hawaii (red, green, and white). The large image is 11.3 million light years across.

Most of the "blobs" in the optical image are galaxies in the protocluster, including 14 that have been detected in the new, deep Chandra image. These X-ray sources reveal the presence of material falling towards supermassive black holes containing hundreds of millions of times more mass than the Sun. The Spiderweb protocluster exists at an epoch in the Universe that astronomers refer to as "cosmic noon". Scientists have found that during this time — about 3 billion years after the big bang — black holes and galaxies were undergoing extreme growth.

14 sources labeled
14 sources detected by Chandra (Credit: X-ray: NASA/CXC/INAF/P. Tozzi et al; Optical (Subaru): NAOJ/NINS; Optical (HST): NASA/STScI)

The Spiderweb appears to be exceeding the lofty standards of even this active period in the Universe. The 14 sources detected by Chandra (circled in a labeled image) imply that about 25% of the most massive galaxies contain actively growing black holes. This is between five and twenty times higher than the fraction found for other galaxies of a similar age and with about the same range of masses.

These results suggest that some environmental factors are responsible for the large number of rapidly growing black holes in the Spiderweb protocluster. One cause may be that a high rate of collisions and interactions between galaxies is sweeping gas towards the black holes at the center of each galaxy, providing large amounts of material to consume. Another explanation is that the protocluster still contains large quantities of cold gas that is more easily consumed by a black hole than hot gas (this cold gas would be heated as the protocluster evolves into a galaxy cluster).

A detailed study of Hubble data may provide important clues about the reasons for the large number of rapidly growing black holes in the Spiderweb protocluster. Extending this work to other protoclusters would also require the sharp X-ray vision of Chandra.

A paper describing these results has been accepted for publication in the journal Astronomy and Astrophysics and a preprint is available online. The first author is Paolo Tozzi from the National Institute for Astrophysics in Arcetri, Italy.

NASA's Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory's Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.

 

Fast Facts for Spiderweb Galaxy Field:
Credit  X-ray: NASA/CXC/INAF/P. Tozzi et al; Optical (Subaru): NAOJ/NINS; Optical (HST): NASA/STScI
Release Date  March 31, 2022
Scale  Main image is about 6.8 arcmin (11.3 million light years) across; Inset image is about 36 arcsec (1 million light years) across.
Category  Black Holes, Groups & Clusters of Galaxies
Coordinates (J2000)  RA 11h 40m 48.3s | Dec -26° 29´ 09"
Constellation  Hydra
Observation Date  22 total observations: 1 observation: June 6, 2000 and 21 observations between November 18, 2019 and August 4, 2020.
Observation Time  198 hours
Obs. ID  898, 21481-21484, 22905, 22921-22929, 23069, 23175, 23186, 23190, 23201, 23205, 23215
Instrument  ACIS
References Tozzi, P., et al., 2022, A&A, Accepted; arXiv:2203.02208.
Color Code  X-ray: purple; HST: red, green, blue; Subaru: red, green, blue
Optical
X-ray
Distance Estimate  About 10.6 billion light years (z=2.156)
distance arrow
Rate This Image

Rating: 3.9/5
(392 votes cast)
Download & Share

Visual Description

More Information
More Images
X-ray Image of the
Spiderweb Galaxy Field
Jpg, Tif
spiderweb X-ray image

More Images
Animation & Video
A Tour of the Spiderweb
Galaxy Field
animation

More Animations
Related Images
NGC 4696
Geminga
(18 January 2017)
PSR B1509-58
PSR B1509-58
(3 April 2009)

Related Information
Related Podcast
Top Rated Images
Chandra Meets Webb

Data Sonification

NGC 1385, NGC 1566, NGC 3344, NGC 6503




FaceBookTwitterYouTubeFlickr